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1.   INTRODUCTION 

     The system for quantum computation(QC) that we are proposing is modeled  on the 
ion trap system for QC1 where the ion qubits are coupled among themselves through their 
collective oscillations in the ion trap, which plays the role of a resonant bus. The bus for 
the proposed  Josephson junction(JJ) prism qubit QC is a single mode LC resonant 
loop2,3,4,.  Magnetic flux from the loop threading a qubit will produce a loop-qubit 
interaction via the Bohm Aharonov effect.  At their preferred operating point, the 
proposed qubits have negligible circulating persistent currents and are kept by symmetry 
from interacting with their coupled measurement SQUIDs.  By pairing the physical 
qubits into logical qubits, it is possible to maintain the logical qubits in a decoherence 
free subspace(DFS)5,6,7 that nulls the decoherence effects of uniform external flux 
perturbations, and the perturbations associated with computational Mølmer 
Sørensen(MS) bichromatic gates8,9,10.  The only time a logical qubit should interact with 
the environment is during the unitary gate rotation that initialize the qubits, and during 
the final Hadamard rotation, which allows the qubit to interact with the measurement 
SQUID gradiometer.  

 

2. JOSEPHSON JUNCTION TRIANGULAR PRISM QUBITS                                                           

                                                          
      The physical qubits that we shall consider are based on a simplified version of 

qubits considered in a previous paper4.  We assume that the junction critical currents and 
the circuit dimensions are small enough so that the dimensionless self and mutual 
inductances of  the qubit circuit  in units of 0 /(2 )cL cIπ= Φ  are small and can be 
neglected11,12.  The Hamiltonian for the qubit shown in Fig. 1 may be written in term of 
the junction gauge invariant phases iζ , critical currents CiJ , and capacitances  as iC
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⎡= Φ −⎣∑ & ⎤⎦  where the flux quantum and junction 

characteristic energy are written as 0 / 2h eΦ = and 0 / 2J cE J π= Φ . 
       The phase constraint equations for the two cells are given by  1 2 3 a1ζ ζ ζ φ− − =  and 

2 1 4 a2ζ ζ ζ φ− + = . Defining the symmetric and antisymmetric combinations of the 
external magnetic fluxes and phases as 1 2( ) / 2,θ ζ ζ= + 1 2( ) / 2 ψ ζ ζ= −   and   

1 1
1 2 1 22 2( ), (s a a a a a )φ φ φ φ φ φ= + = − , with 02 ( / )i iφ π= Φ Φ  yields 3 2 a sζ ψ φ φ= − −  and 

.4 2 a sζ ψ φ φ= − + .  We allow for the possibility of differing junction areas by writing 

1,2CJ J J= ± ∆ , 3,4CJ j j= ± ∆ , 1,2C C C= ± ∆ , and 3,4C C C= ± ∆ . 
       In order to obtain the unperturbed Hamiltonian and its wave function, we assume 
 
 



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF
ABSTRACT

18. NUMBER 
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code) 

01-05-2005 Journal Article 2003

Josephson junction qubits with symmetrized couplings to a resonant LC bus N/A

N/A

61102F

2304

HE

2304HE03

Stanford P. Yukon

Electromagnetic Scattering Branch (AFRL/SNHE)                  Source Code: 437890
Electromagnetic Technology Division, Sensors Directorate
80 Scott Drive,
Hanscom AFB, MA 01731-2909

N/A

Air Force Office of Scientific Research/NM
875 North Randolph Street
Arlington, VA 22203

AFOSR/NM

AFRL-SN-HS-JA-2004-0490

UNLIMITED DISTRIBUTION

ESC Public Affairs Clearance #:  04-0490; Published in “Quantum Computing and Quantum Bits in Mesoscopic Systems”, A. J. 
Leggett, B. Ruggiero, and P. Silvestrini eds. Kluwer Academic Plenum Publishers, NY USA, (2003)

The system for quantum computation(QC) we are proposing is modeled on the ion trap system for QC1 where ion qubits are 
coupled among themselves through collective oscillations in the ion trap, which plays the role of a resonant bus. The bus for the 
proposed Josephson junction(JJ) prism qubit QC is a single mode LC resonant loop. Magnetic flux from the loop threading a qubit 
will produce a loop-qubit interaction via the Bohm Aharonov effect. At their preferred operating point, the proposed qubits have 
negligible circulating persistent currents and are kept by symmetry from interacting with their coupled measurement SQUIDs. By 
pairing the physical qubits into logical qubits, it is possible to maintain the logical qubits in a decoherence free subspace(DFS) that 
nulls decoherence effects of uniform external flux perturbations, and perturbations associated with computational Mølmer Sørensen
(MS) bichromatic gates. The only time a logical qubit should interact with the environment is during unitary gate rotation that 
initialize qubits, and during final Hadamard rotation, which allows the qubit to interact with the measurement SQUID gradiometer. 

Josephson junction qubit, geometric gates, holonomic quantum computation.

U U U UU 12

Stanford. P Yukon



 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.   a) JJ prism qubit with junction critical currents JCi, gauge invariant phases zi and external magne
fluxes Fi indicated.   b) Resonant LC bus symmetrically coupled to qubit pairs.   c) Antisymmetric coupling
adjacent buses to a logical transfer qubit. 
 
  
equal area junctions and circuit loops, zero external antisymmetric flux, and a consta
symmetric flux  given by   0 0

0( / 2 )s sφ πΦ = Φ  .  The Hamiltonian may be written usi
θ  and ψ  variables as 
              

( )2 2 01 1
0 2 2( , ) [2cos( )cos( ) 2 / cos( )cos(2 )]J sH M M E j Jθ ψ aθ ψ θ ψ θ ψ φ ψ φ= + − + −& &       (

 
where we have defined ( )( ) ( )2 2

02 1 4 / 2 1 4 / 4 cM C Eψ ρ π ρ= + Φ = + h , /C Cρ =

( )2 2
02 / 2 / 4 cM Cθ π= Φ = h E , with the capacitive energy  given by . 

contour plot of the potential energy V r
CE 2 / 2CE e C=

( , ) 2cos( )cos( ) cos(2 )a
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z4, JC4

z3,J

Fa1

Bus 
Bu

a b

θ ψ θ ψ ψ φ= − + −   is show
in Fig. (2a) for  where 0.675r = 02( / )cos( )sr j J φ= − .  Approximate eigensolutions a
obtained by making a Hartree approximation, where the full two dimensional wa
function is approximated by a separable wave function ( , ) ( ) ( )θ ψ θ ψΨ ≈ Θ Ψ .  Assumi
that the motion in the θ  direction is in its ground state, the cos( )θ  term in V ( , )θ ψ  m
be replaced by its expectation value 0 cos( ) 0H θ θη θ= ,  leading to an effective qu

potential in ψ  given by V r0( ) 2 cos( ) cos(2 )Hψ η ψ ψ= − + .  Writing θ&  and ψ&  in terms 

the momentum operators /M p iθ θθ θ= = − ∂ ∂& h , /M p iψ ψψ ψ= = − ∂ ∂& h  w

, the unperturbed effective 1D Hamiltonian leads to the time independe
Schrödinger equation  

2/Jm M Eψ ψ= h

 
                   2 2( ) / 2 [2 cos( ) cos(2 )] ( ) 2 ( / ) ( )H im r m E E

ψ ψ Jψ ψ η ψ ψ ψ ψ−∂ Ψ ∂ − − Ψ = Ψ                (2
 

which is in the form of the Whittaker Hill equation. Solutions for the eigen functions a
energies for the Whittaker Hill equation have been found by Unwin and Arscott terms 
continued fractions13.  
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Figure 2.   a) Contour plot of ( , )V θ ψ  for r =

    
3.   COUPLING THE RESONANT
  
       The qubits are coupled among 
coupling with a resonant LC bus a
oscillator with inductance L and ca
operators sϕ  and sp  as osc

0/( / 2H Φ

1/LC LCω = , and s sM p iϕϕ = = − ∂&

†/ 2 ( )LC a aω= +s Mϕϕ h and sp i=

qubit gates on the ith qubit, we inclu
to ( )0i

aφ ,  as well as an external mic

along with ( )i
sk ϕ , the portion of t

 with the inductan( ) ( )( / )Li ik L= ( )iL
defects, we may write the  Hamilto

00 0 cos2 110 , 1 cos2 1c cψ ψ= =
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.675       b) Energy levels for (0, )V ψ  in units of EJ . 

 LC BUS TO THE QUBITS 

themselves via their (symmetric) mutual inductance 
s shown in Fig. (1b).  The Hamiltonian for a bus 
pacitance C  may be written in terms of the phase 

 with   2 2 2 2) / 2 / 2s LC sp M Mϕ ϕπ ω ϕ 2
0( /2 )M Cφ π= Φ , = +

/ sϕ∂ . In terms of annihilation and creation operators 
†/ 2( )LCM a aϕ ω −h . In order to carry out unitary 

de an external microwave pulse  to be added ( ) ( )i
a tδφ

rowave or DC pulse  to be added to ( )
, ( )i

s ext tδφ ( )0i
sφ  

he bus flux that interacts with the ith qubit, where 
ce of the ith coupling loop.  For the case with no 
nian for the ith perturbed qubit, with the definitions 

01, 0 sin 2 1s = ψ , 0 /j Jj H j Eε = as  

†

( )

( ) ( )1
2

( )2 ( )

1̂
ˆ ˆ ˆ ˆˆ 1 1 / ( )1 1
ˆ ˆ1 1

i bus

i bus bus bus i
z LC J j j

us i bus i
s

E a aσ ω

δφ

⊗

⊗ + + ⊗

⊗

h

&

( ) 0 ( ) ( ) ( )
0 0

( ) 0 ( ) ( ) ( )
0 0

( )
1

ˆ ˆ( ( ) 1) tan ( )sin ]}1 1
ˆ ˆ( ( ) 1) tan ( )sin ]}1

ˆˆ/ ( ) 1

i i i bus
s s a s

i i i bus i
s s a s

i bus
i i x

J J

J J

δ φ δ δφ i

zδ φ δ δφ

ψ ψ σ

− − ⊗

− − ⊗

∂ Ψ ⊗
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                   3.1  Logical Qubits for a Decoherence Free Subspace 

  The Rabi frequency  for coupling a bus excitation to the i( )iΩ th qubit via the interaction 
term ( ) ( )( ) ( ) ( )sin sin i ii i i

a s x a s xδφ δφ σ δφ ϕ σ→ is given by 
( ) 0 ( ) ( )

10[ tan( ) / 2 ( / 2 )]i i i
s a LCr s L Lφ δ ω µΩ = h L . Since ( ) 1/i NΩ ∝ , to increase  for a 

particular value of N it is necessary to increase either 

( )iΩ
( )i
aδφ  or  or both.  Increasing 

(by forming multilevel spiral inductors) is only mildly effective due to the 

( )iL
( )iL

1
4( )( )iL  

dependence, while increasing the amplitude of ( )i
aδφ , while effective has the drawback 

that the Bessel expansion term ( ) ( ) ( )1
02 ˆ0 cos2 0 1cos2 1 (( ( ) 1)i i

i i a zr Jψ ψ δ σ− − = ( ) ( ) ( )ˆ/i i i
J zEδ σΩ h  

is excited concomitantly, and will lead to phase errors when ( )i
aδ  is not small.   

      This type of phase error (as well as any symmetric external flux fluctuations) can be 
nulled by using encoded logical product qubits with 
{ 0 01 0 1 , 1 10 1 0 }L L= ≡ ⊗ = ≡ ⊗  or by employing the two entangled Bell 

states { 0 ( 01 10 ) / 2, 1 ( 01 10 ) / 2L L= + = −% % }  as logical qubits.  For either 

type, applying ( )i
aδφ  and ( 1)i

aδφ +  to the first (i) and second (i+1) physical qubits of a 
logical qubit, will result in a positive phase shift in one physical qubit canceling a 
negative phase shift in the other if their two Rabi frequencies ( )iδΩ and  are equal.  
It can be shown that this type of cancellation will occur during MS gates as well. 

( 1)iδ +Ω

       The Bell state qubits have the property that 
(1) (2) (1) (2)

1 0 1 00 1 ( ) ( )r L Lt H H ε ε ε ε= + = − − −% %  and (1) (2) (1) (2)0 0 1 1L L L LH H H H+ = +% % % %

=

, 

i.e. their eigen energies are exactly equal (if they are properly formed). However if the 
junction or flux properties of the two physical qubits differ, the transition matrix element 

 will be non zero and there will be tunneling between the two states.  Transforming to a 
basis in which t , yields the product states with zero tunneling but 

rt
0r

(1) (2) (1) (2) (2) (
1 0 1 00 0 1 1 ( ) ( )L L L LH H H H ε ε ε ε+ − + = − − − 1)

n sin ii i
a s x

 so there may be non 
zero time evolution.  
 
 3.2  Mølmer- Sørensen Gate 

      Sørensen and Mølmer have given a detailed description of a bichromatic excitation 
scheme that enables multiple qubit gate operations to be carried out for ion trap quantum 
computers8,9,10.  Their scheme is desirable since it allows for relatively rapid gates to be 
carried out via an oscillator bus, while returning the bus to its pre-gate initial configuration 
irrespective of the initial state of the bus.  For the case of  logical JJ prism qubits coupled by a 
resonant LC bus, the MS scheme is desirable since it allows logical qubit gates to be carried 
out without exciting figure 8 currents.  As the gate operators for the ion-trap case have been 
set forth7,3 we display the needed gate operators for the slightly different case of the 
interaction Hamiltoniansi ( )( ) ( )δφ δφ σ

n i
a

while relaxing the condition that all qubit interactions 
have the same Rabi frequency.  Expanding the si ( )δφ and ( )sin i

sδφ terms to lowest order in 
( )i
aδφ  and ( ) ( )1

2 ( / )i i
s s L Lδφ µϕ=  and  making the rotating wave approximation leads to an 

interaction term ( ) 2 ( )[ (cos( ) (sin( ) ] ( )[ ( ) ( ) ]x s LC s LC x s sJ t p t J f t g t pφ ϕ ω δ ω δ φ ϕ≅− Ω − + − = +V t
r r

 



                    
 
where 1

2 ˆ ˆ( ) [ ]( / )i ii ii i
x i

i
J e eφ φφ σ σ−

+ −= + Ω∑
r

Ω with 0 ( )
10[ tan( ) / 2 ( / 2 )]i

i s a LC siter s L Lφ δ ω µΩ = h L  

and  being the individual and average Rabi frequencies of the interacting qubits. For 
the MS bichromatic  excitation, 

Ω
( )i
aδφ  is made up of signals from two microwave sources 

with  source phases ( )iφ  and frequencies 10ω ω± δ= ± , where 10 1 0( ) /ω ε ε= − h  and  
2LCδ ω ± Ω .  In Ref. 10, the exact evolution operator for V(t) is shown to be given 

exactly by   
 
              U                               (4)      2( ) exp( ( ) )exp( ( ) )exp( ( ) )x x xt iA t J iF t J x iG t J p= − − −

              
with 0( ) ( ) 2 sin[( ) ] /( ),t

LC LCF t f d tτ τ ω δ ω δ= = − Ω − −∫ 0 ( )( ) t  G t g dτ τ∫=   and 

0( ) ( ) ( ) .tA t F g dτ τ τ= −∫   For a pulse length given by ( ) 2LC Kt Kω δ π− =  where K is an 
integer,  and the bus can be returned to its initial vibrational state.  
Choosing values for 

( ) ( ) 0K KF t G t= =

, , andK δ Ω , yields 2( ) 2 /( )K LA t K 2
Cπ ω δ= −Ω −  and conversely 

2 /Kt A Kπ= − Ω .  The single (logical) qubit gates can be composed as   
                 

                   
2 2 2 (1) (2)1

1,2 1 2 1 22

2 2 21 1
1 2 1 2 1 22 2

ˆ ˆ ˆ2 ( 0) ( )1 ,
ˆ ˆ ˆ2 ( 0, ) ( )1

x

(1) (2)

x x

x x y

X J

Y J

φ λ λ λ λ σ σ

φ φ π λ λ λ λ σ σ

= = = + +

= = = = + −
                             (5)  

              
where /i iλ = Ω Ω . Operators for product and Bell logical qubits are given respectively 
by (1) (2) (1) (2){ , , }Lx x x Ly y x Lz L x L yiσ σ σ σ σ σ σ σ σ= = = −   and 

.  For the product logical qubits, the 

CZ gate may be written as 

(1) (2) (1) (2){ , ,Lx L x L y Ly y x Lz x xiσ σ σ σ σ σ σ σ σ= − = − =% % % % % }
( , ) ( ) ( ) ( ) ( )exp( / 4)exp( / 4)exp( / 4)I II I II I II
CZ L z L z L z L zU i  

where the term e  can be expressed in terms of a four (physical) qubit 

Mølmer- Sørensen gate 

i i iσ σ π σ π σ π= − −

xp( / 4)I II
L z L ziσ σ π( ) ( )

2
1,2,3,42 ( 0)xXX J φ= =  

 
                                        ( , ) ( ) ( )exp( / 4)exp( / 4)exp( / 4)exp( / 4)I II I II

CZ L z L zU i                   (6) i XX i iπ π σ π σ π=
 
When the Rabi frequencies for the four physical qubits are not 

identical, mixed terms like 1 4
x xσ σ  will arise with non zero coefficients proportional to 

1i iγ λ= − .  If the Rabi frequencies for each physical qubit of a logical qubit pair can be 
made equal, then can be defined as the average Rabi frequency with Ω

1 2 3 4γ γ γ γ γ= = = − = − .  Terms that are proportional to 1 2 3 4γ γ γ γ+ + +  will be nulled, 
and the remaining  terms will be proportional to either (1) (2)

x xσ σ , (3) (4)
x xσ σ , or 

(1) (2) (3) (4)
x x x xσ σ σ σ  that can be accommodated by small changes in pulse lengths.  If  the two 

Rabi frequencies and ( )iδΩ ( 1)iδ +Ω for each logical qubit pair are equal, as is required to 
cancel out ( ) ( )ˆi i

zδ σΩ and ( 1) ( 1ˆi i
zδ σ+ +Ω phase errors generated during a gate, then 

 is satisfied.  If  (1) (1) (1) (1) (1) 2
0 00 11cos( ) ( )[ ]c s aj c cφ δ− = ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) 2

0 00 11cos( ) ( )[ ]c s aj c cφ − δ

5 
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(1) (1) (1) (1)
0 01sin( ) [ ]c s aj sφ δ = (2) (2) (2) (2)

0 01sin( ) [c s aj sφ δ ]  is satisfied, then the Rabi frequencies for 
qubits 1 and 2 will be equal.   For both constraints to hold concurrently, the equality of 
Eq. (7) must be satisfied, which is possible to achieve by varying (1)

aδ  (or (2)
aδ ) if (1)

0sφ and 
 

        (2) (1) (2) (2) (1) (1) (1) (1) (2) (2) (1) (2)
0 01 00 11 0 01 00 11( / ) tan( ) ( ) / tan( ) ( ) ( , )a a s ss c c s c c f r rδ δ φ φ= − − =              (7) 

 
(2)
0sφ are fixed , as shown in Fig. (3).         
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 4.  CIRCULATING CURRENT PATTERNS FOR THE QUBIT STATES 
 
       The circulating current patterns associated with the 0  and 1  states can be 

derived by using 3,4 2 a sζ ψ φ φ= − m  and by assuming aφ  to be a small perturbation, 
which then yields  

 

               
0 0 0

3,4 3,4 3,4 0

1 0 0
3,4 3,4 3,4 1

0 sin 0 (1 cos sin / sin cos )

1 sin 1 (1 cos sin / sin cos )
C s a

C s a

J J j

J J j
s a

s a

ζ κ φ φ φ φ

ζ κ φ φ φ

= = ±

= = ±

m

m φ
                    (8) 

 
with 0 0

0 sin cos 0 cos2 0
asκ φ φ ψ=  and 0 0

1 sin cos 1 cos2 1
asκ φ φ ψ= .  In the Hartree 

approximation if ∆ =  the expectation value of  0J j∆ = 11 1 sinCJ J ζ=   in the 1  or 0  
state of ψ  is equal to zero.   The circulating current patterns associated with the 
unperturbed 0  and 1  states are thus clockwise currents of magnitude 

0 0
3 4 0J J jκ= − = −  and 1 1

3 4 1J J jκ= − = −  around the perimeter of the qubit, and are 
plotted vs.  in Fig. 7b.  r

       Since the probability density for the two superposition states ( )1
2

0 1± = ± is 

centered around the potential well minima at *ψ ψ= m , circulating currents for these 
states are close to the classical equilibrium currents.  Writing 

0 0
01 0 sin2 1 cos( )s aκ ψ φ= φ− , circulating currents for the ± states may be reexpressed as 
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1 1

3 3 3 0 1 01 3 3 3 0 12 2

1 1
4 4 4 0 1 01 4 4 4 0 12 2

sin ( ) , sin ( )

sin ( ) , sin ( ) .
C C

C C

J J j j J J j j

J J j j J J j j
01

01

ζ κ κ κ ζ κ κ κ

ζ κ κ κ ζ κ κ κ

+ −

+ −

= + + =− + + = − − = − + −

= + + = + + + = − − =+ + −
 (9) 

 
The circulating current is thus comprised of a perimeter current 1

0 12 (j )κ κ+ , which has the 
same sign for  the ± states, and a figure eight current 01jκ  that changes sign for  ± states. 

       
4.1   Initializing the Qubits and the Effect of Critical Current and Geometric Defects 

     
      All of the qubits are initially allowed to relax to their respective ground states.  For 

a system in which all of the cell and junction parameters are identical, every even 
numbered qubit is given an x rotation of 180±. In order to avoid phase errors during these 
initializing single qubit gates, the gates should be carried out with long, small amplitude 
microwave pulses. Each {iodd, iodd+1} pair of qubits is then designated as a product logical 
qubit {I,II,III..}.  To initialize the Bell state logical qubits a further logical (MS) 
Hadamard gate is needed for each logical qubit. A test measurement should show that 
there is no antisymmetric flux coupled to the SQUID gradiometer detectors 

       For a qubit in which there is some combination of junction critical current defects 
and cell geometry defects, a term in the Hamiltonian will be generated that is 
antisymmetric in ψ  and θ  

 

          
0 0

, ,{2 sin cos 2 cos sin }sin 2 2 sin sin

sin 2 2 sin sin
a geom s a geom s

a b
defect

V j j J

J V V

φ φ φ φ ψ θ

κ ψ θ ψ

∆∆ = − + − ∆

= − − ∆ = ∆ + ∆

ψ
.        (10) 

 
The effect of  on the potential is to tilt it in the aV∆ ψ direction as shown in Fig. 4b, 
while the effect of  is to skew the potential  as shown in Fig. 4c. For an 
accurate numerical solution for the 2D potential has been undertaken but not yet 
completed, we will thus approximate the perturbed wavefunctions using first order 
perturbation theory.   
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Figure 4a.  a) Symmetric{ , } and antisymmetric {0κ 1κ 01κ } current amplitudes vs. r.  

                   b) Contour plot of V ( , )  for 0aV∆ ≠ .   c) Contour plot of V ( , )  for 0bV∆ ≠ . θ ψ θ ψ
 
 
In a Hartree approximation there are four types of states when labeled by parity with 
respect to θ  and ψ ; , { ,m n even even= , ,even odd , ,odd even , and ,odd odd } 
where m and n are the number of nodes in θ and ψ .  The only type of (separable) states 
contributing to the summation that will survive in a first order perturbation 
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expansion 0 0 0 0/( )b

k n
V E E

≠
= + ∆ −∑ n kn n k n 0  for 0  and 1 ,  are ,odd odd  and 

,odd even  type states respectively,  where 0n  are unperturbed states.   Keeping only 

the lowest energy terms 02 1,1=  and 03 1,0= , an approximate solution may be written 

as 0 00 0 2α= + and 01 1 3β= + 0  where 0 0 (0)
2 02 2 sin sin 0 /(J Eα θ ψ= ∆ − (0) )E  and 

0 0 (0)
3 02 3 sin sin 1 /(J Eβ θ ψ= ∆ − (0) )E .  The matrix elements of bV∆ are then given by 

0 0 00 0 2 0 2 , 1 1 2 1 3b b bV V V Vα β∆ = ∆ ∆ = ∆ 0 ,b  and 0 1bV 0∆ = . Critical 
current defects in junctions 1 and 2 will thus lead to a second order (in /J J∆ ) correction 
in the energies of the two qubit states,  but it will not lead to transitions between them.    
      The most direct way of nulling the aV∆  term is to add a small external antisymmetric 
‘trim’ flux to the existing flux so that the resultant antisymmetric flux  

will satisfy  

0
, ,a a geom a trimφ φ φ= +

0 (tan / ) tana j j 0
sφ φ∆= − . The net result of having (0)

aφ determined by this 
equation, is that small figure eight currents that were present initially in the 0  and 1  
states and could interact with the SQUID detector are  now nulled, while perimeter 
currents in the 0  and 1  states will be slightly decreased by the last factor in Eq. (8) 

which simplifies to  .  If  0 0(1 / )(1 cos sin / sin cos ) [1 ( / ) ]s a s aj j j jφ φ φ φ± ∆ = − ∆m 2 /J J∆  is 
not zero, then there will be a  multiplicative factor of for the 2

11 00(1 / )c cα+ 0  state and 

 for the 2
00 11(1 / )c cβ+ 1  state.   

       If the trim current is not applied, then there will be a non zero figure eight current of 
magnitude  for the 0

0 ,( tan / tana geom sj jκ φ∆ + )φ 0  state and 0
1 ,( tan / tana geom sj j )κ φ∆ + φ  for the 

1  state.  From Fig. 4a it can be seen that if  the qubit is operated around r  then and 
 are small (~ equal and opposite) and  

* , 0κ

1κ RabiΩ  is near its maximum at . 0.75r ≈
   The Hamiltonian 0H V+ ∆  can be diagonalized by a unitary rotation to a new basis.  

Since the unperturbed wave functions for the two basic states 0 ( , ) , 0θ ψ θ ψΨ =  and 

1( , ) , 1θ ψ θ ψΨ = are both symmetric in θ , the matrix element of the last term in ∆  
will be zero. Only junction defects 

V
j∆ , associated with outer junctions 3 and 4, and a 

small antisymmetric flux aφ  due to different cell sizes, will then affect the operation of 
the qubit.   

 
4.2  Connecting Buses into a Network 

 
      It is possible to couple groups of buses in an open branching network using transfer 
qubits as first described in Ref. (4).  A diagram of one possible coupling scheme is shown 
in Fig. 1c where bus 1 is coupled symmetrically to the transfer qubit and bus 2 is coupled 
antisymmetrically in order to prevent direct mutual inductance coupling from bus 1 to 
bus 2.  Using ( , )I II

CZU  from Eq. (6),  an expression for % ( , )j k
CNU  may be written using the 

Hadamard operator 

%

kH% as .  Writing ( , ) ( , )j k j k
CN k CZ kU H U=% % % H%

( ) ( )( / 4) ( / 2)k k
Ly Lzi i

kH ie eπ σ π σ−= − % %% ,  the 

 operator may be expressed as CN% %
( ) ( )( / 4) ( / 4)( , ) ( , )
k k

Lyi ij k j k
CN CZ

LyU eπ σ π σ−= % %% %

}
U e which requires 4 

(bichromatic) microwave pulses. Since { ,(1) (1)x p } commute with { ,(2) (2)x p , the 
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expression for A(t) in Eq. 4. is replaced by (1) (2)( ) ( ) ( )A t A t A t→ + .  For both bus 
oscillators to return to their pre gate values both of the constraints 

(1) (1)( )LC Kt K 2ω δ π− =  and ( )(2) (2) 2LC Kt Kω δ π− =  with integer  must be 

satisfied simultaneously.  For 
( )iK

(2) (1)K K= −  a solution is (1) (2)( )LC LC / 2δ ω ω= + , 

(1) (1) (2)4 /(K LCt K )LCπ ω ω= − , which yields (2) (1)( ) ( )( 1)PA t A t= − −  where P is the 

parity of the bus 1-bus2 coupling.  Thus U t .  . (1) (2)
(1)( ) exp( 2 ( ) )K K x xiA t σ σ= −

  For the 2 logical qubit CZ gate, if one of the logical qubits is a transfer qubit, its 
coupling to a second bus will engender a single logical qubit rotation that is in the proper 
direction for the CZ gate. Thus if logical qubit 3-4 is a transfer qubit connected to a 
second bus, the expression (1) (2) (3) (4)ˆ ˆ ˆ ˆ( / 4) ( / 4) ( / 4)x x x xexp i XX exp i exp iπ π πσ σ σ= − − σ

/ 4]p iπσ σ
 picks 

up a factor ex  obviating the necessity a separate gate.   If there are two 
transfer qubits involved, no single logical qubit gates are needed at the transfer qubit 
sites.  This reduces the number of  separate microwave pulses for a CN gate with one bus 
transfer from 5 to 3 and also reduces the time needed to carry out the gate by 

(3) (4)ˆ ˆ[ x x

2 Kt .  
      To carry out a CN gate over a number of buses, it is necessary to first carry out a 
sequence of ( , )j t

CNU ’s starting from the control qubit, through all of the intervening transfer 

qubits to the target qubit, followed by  a final  sequence of  U

%

( , )i i
CN

′%

i i
CN

 from the original qubit 
to the last transfer qubit in order to reset the transfer qubits to their original ground states.  
The sequence involving 2 transfer qubits would thus be )U ( , ′%  between ( j,t1),( t1,t2),( t2,k) 

followed by resetting transfer qubits with U ( , )i i
CN

′%  applied to (j,t1)  and (t1, t2).  These 
maneuvers may be chained across as many coupled buses as required.  The wave 
equation for the entire system may be written as NcΨ = Ψ∑ n

n n with 
( ) ( )

1 1 1 ( ),
tr bus

i j

N N Ni j
i j kN α βχ χ χ= = =Ψ = ⊗ ⊗∏ ∏ ∏% %n

kk γ , where the qubits and bus are restricted to 

the two lowest energy states {0,1}, {0,1}, {0,1}i j kα β γ= = =  and where 

with1, 2, , 1 2 1 2{ .... , ,... , , ,.... }
trN N Nbusα α α β β β γ γ γ=n 0 0Lχ = %% , 1 1Lχ = %% , 0 0Busχ = , 

and 1 1Busχ = .  Because the MS gates return the buses and (along with resetting) the 

transfer qubits to the initial state they were in before the ( , )j k
CNU  gate, and the logical 

qubits do not evolve in time, it should be possible to maintain quantum coherence across 
the set of coupled buses.  This allows open branching networks of coupled buses to be 
formed, enlarging the possible number of interacting qubits in a single quantum 
computer. 

%

CONCLUSIONS: 

       We have shown that it is possible to design a quantum computer comprised of  
Josephson junction prism qubits that are coupled via the flux of a resonant LC bus. that is 
capable of  carrying out quantum computations in a decoherence free subspace. The 
effective Hamiltonian is zero between gates, so there is no dynamical evolution of the 
system.  The |0Ú and |1Ú physical qubit states are characterized by circulating currents that 
follow the perimeter of a two cell qubit, and are thus symmetric with respect to the flux 
threading the cells of the qubit.  The logical qubit states are made up of linear 
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combinations of 01 ª 0 1⊗  and 10 ª 1 0⊗ , with the result that no 
antisymmetric currents or fluxes are generated by the qubits when Mølmer-Sørensen 
gates are employed.  A coupled SQUID gradiometer that is antisymmetric with respect to 
the flux threading the two cells of a qubit will not register any coupled flux until a 
Hadamard transform is carried out on the physical qubits, immediately prior to a 
measurement.  The two basic states are then transformed into ≤ combination states that 
have antisymmetric ‘figure 8’ circulating currents whose flux is then measurable by the 
SQUID gradiometer.  The coupling of each qubit to an LC resonant bus is made by 
means of a loop that encircles both cells of the qubit symmetrically.  This prevents the 
direct mutual inductance coupling of the bus to both antisymmetric microwave gate 
pulses and the measuring SQUID gradiometer. 
        Pairing the qubits into logical qubits also enables Mølmer-Sørensen gates to be 
used, since the phase errors that would ensue if QC were based on physical qubits are 
cancelled out in each pair of qubits.  The requirement that the LC resonant loop be 
smaller in extent than one tenth of a substrate wavelength to remain within the quasistatic 
limit, constrains the number of qubits that can interact on a single LC resonant bus to 
around N = ~50 – 100. To enlarge the system, two resonant loop buses are coupled by 
means of a ‘transfer’ logical qubit that couples concurrently to both buses.  Direct 
interaction of the loops is prevented by coupling them antisymmetrically. With more than 
one transfer qubit per bus, the buses may be coupled into a scalable open network. The 
use of Mølmer -Sørensen gates insures that the quantum states of the buses and transfer 
qubits will be returned to their pre-gate status.  Since the logical qubits do not evolve in 
time, it should be possible for the system of coupled buses and qubits to maintain 
quantum coherence.   
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